Skip to content

PlantMWpIDB: a database for the molecular weight and isoelectric points of the plant proteomes

  • Mohanta, TK, Khan, AL, Hashem, A., Abd Allah, EF & Al-Harrasi, A. The molecular mass and isoelectric point of plant proteomes. BMC Genom. twenty631 (2019).

    Article CAS Google Scholar

  • Mohanta, TK et al. Virtual 2-D map of the fungal proteome. Sci.Rep. eleven6676 (2021).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Uversky, V. N. In Posttranslational modification (eds Maloy, S. & Hughes, KBT) 425–430 (Academic Press, 2013). https://doi.org/10.1016/B978-0-12-374984-0.01203-1.

    Chapter Google Scholar

  • Sun, Q. et al. PPDB, the plant proteomics database at cornell. Nucleic Acids Res. 37D969–D974 (2009).

    CAS PubMed Article Google Scholar

  • Mohanta, T., Syed, A., Ameen, F. & Bae, H. Novel genomic and evolutionary perspective of cyanobacterial tRNAs. Front. Genet. 8200 (2017).

    PubMed PubMed Central Article CAS Google Scholar

  • Ochsenreiter, T., Cipriano, M. & Hajduk, SL Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS ONE 3e1566 (2008).

    ADS PubMed PubMed Central Article CAS Google Scholar

  • Reid, DW & Nicchitta, CV Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 16221–231 (2015).

    CAS PubMed PubMed Central Article Google Scholar

  • Livingstone, M., Atas, E., Meller, A. & Sonenberg, N. Mechanisms governing the control of mRNA translation. Phys. Biol. 721001 (2010).

    Article CAS Google Scholar

  • Li, X. et al. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein–protein interactions. J. Am. Chem. Soc. 1341982–1985 (2012).

    CAS PubMed PubMed Central Article Google Scholar

  • Eisenhaber, BE Posttranslational modifications and subcellular localization signals: Indicators of sequence regions without inherent 3D structure?. curr. Protein Peptide Sci. 8197–203 (2007).

    CAS Article Google Scholar

  • Finkemeier, I., Laxa, M., Miguet, L., Howden, AJM & Sweetlove, LJ Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 1551779–1790 (2011).

    CAS PubMed PubMed Central Article Google Scholar

  • Wolf, S., Lucas, WJ, Deom, CM & Beachy, RN Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246377–379 (1989).

    ADS CAS PubMed Article Google Scholar

  • Ivankov, D.N. et al. Contact order revisited: Influence of protein size on the folding rate. ProteinSci. 122057–2062 (2003).

    CAS PubMed PubMed Central Article Google Scholar

  • Hishigaki, H., Nakai, K., Ono, T., Tanigami, A. & Takagi, T. Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18523–531 (2001).

    CAS PubMed Article Google Scholar

  • Kudlow, JE Post-translational modification by O-GlcNAc: Another way to change protein function. J. Cell. Biochem. 981062–1075 (2006).

    CAS PubMed Article Google Scholar

  • Belizaire, R. & Unanue, ER Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. proc. Natl. Acad. Sci. 10617463–17468 (2009).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Park, D., Choi, SS & Ha, K.-S. Transglutaminase 2: A multi-functional protein in multiple subcellular compartments. amino acids 39619–631 (2010).

    CAS PubMed Article Google Scholar

  • Ugo, P., Marafini, P. & Meneghello, M. SymbolList 21–22 (De Gruyter, 2021). https://doi.org/10.1515/9783110589160-206.

    BookGoogle Scholar

  • Erickson, HP Kinetics of protein–protein association and dissociation. Principles of Protein–Protein Association 5–8 (2019) doi:https://doi.org/10.1088/2053-2563/ab19bach8.

  • Wu, YC, Koch, WF, Berezansky, PA & Holland, LA The dissociation constant of amino acids by the conductimetric method: I. pK1 of MOPSO-HCl at 25 °C. J. Solution Chem. twenty-one597–605 (1992).

    CAS Article Google Scholar

  • Das, RK, Crick, SL & Pappu, RV N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J. Mol. Biol. 416287–299 (2012).

    CAS PubMed Article Google Scholar

  • Vamvaca, K., Volles, MJ & Lansbury, PT The first N-terminal amino acids of α-synuclein are essential for α-helical structure formation in vitro and membrane binding in yeast. J. Mol. Biol. 389413–424 (2009).

    CAS PubMed PubMed Central Article Google Scholar

  • Requiao, DR et al. Protein charge distribution in proteomes and its impact on translation. PLOS Comput. Biol. 13e1005549 (2017).

    PubMed PubMed Central Article CAS Google Scholar

  • von Heijne, G. Net NC charge imbalance may be important for signal sequence function in bacteria. J. Mol. Biol. 192287–290 (1986).

    ArticleGoogle Scholar

  • von Heijne, G. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J. 32315–2318 (1984).

    ArticleGoogle Scholar

  • Dinçbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 196900–6907 (2000).

    PubMed PubMed Central Article Google Scholar

  • Phelps, DS, Floros, J. & Taeusch, HW Jr. Post-translational modification of the major human surfactant-associated proteins. Biochem. J. 237373–377 (1986).

    CAS PubMed PubMed Central Article Google Scholar

  • Aitken, A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. semin. Cell Dev. Biol. 22673–680 (2011).

    CAS PubMed Article Google Scholar

  • Nussinov, R., Tsai, C.-J., Xin, F. & Radivojac, P. Allosteric post-translational modification codes. Trends Biochem. Sci. 37447–455 (2012).

    CAS PubMed Article Google Scholar

  • ZhangL. et al. Towards posttranslational modification proteome of royal jelly. J. Proteom. 755327–5341 (2012).

    CAS Article Google Scholar

  • Li, F.-ML Predicting protein subcellular location using chous pseudo amino acid composition and improved hybrid approach. Protein Peptide Lett. fifteen612–616 (2008).

    ADS Article Google Scholar

  • Park, K.-J. & Kanehisa, M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 191656–1663 (2003).

    CAS PubMed Article Google Scholar

  • Pierleoni, A., Martelli, PL, Fariselli, P. & Casadio, R. eSLDB: Eukaryotic subcellular localization database. Nucleic Acids Res. 35D208–D212 (2007).

    CAS PubMed Article Google Scholar

  • Rastogi, S. & Rost, B. LocDB: experimental annotations of localization for Homo sapiens and Arabidopsis thaliana. Nucleic Acids Res. 39D230–D234 (2011).

    CAS PubMed Article Google Scholar

  • Negi, S., Pandey, S., Srinivasan, SM, Mohammed, A. & Guda, C. LocSigDB: a database of protein localization signals. Database 20152 (2015).

    ArticleGoogle Scholar

  • Guo, X., Liu, F., Ju, Y., Wang, Z. & Wang, C. Human protein subcellular localization with integrated source and multi-label ensemble classifier. Sci.Rep. 628087 (2016).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Orre, L.M. et al. SubCellBarCode: Proteome-wide mapping of protein localization and relocalization. Mol. Cell 73166-182.e7 (2019).

    CAS PubMed Article Google Scholar

  • Wan, S., Mak, M.-W. & Kung, S.-Y. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMC Bioinform. 13290 (2012).

    ArticleGoogle Scholar

  • Bunkute, E. et al. PIP-DB: The protein isoelectric point database. Bioinformatics 31295–296 (2015).

    CAS PubMed Article Google Scholar

  • Kozlowski, LP Proteome-pI: Proteome isoelectric point database. Nucleic Acids Res. Four. FiveD1112–D1116 (2017).

    CAS PubMed Article Google Scholar

  • Kozlowski, LP IPC—isoelectric point calculator. Biol Direct eleven55 (2016).

    PubMed PubMed Central Article CAS Google Scholar

  • Kozlowski, LP Proteome-pI 2.0: proteome isoelectric point database update. Nucleic Acids Res. fiftyD1535–D1540 (2022).

    CAS PubMed Article Google Scholar

  • Su, B., Qian, Z., Li, T., Zhou, Y. & Wong, A. PlantMP: A database for moonlighting plant proteins. Database 20192 (2019).

    Article CAS Google Scholar

  • Brown, JWS, Shaw, PJ, Shaw, P. & Marshall, DF Arabidopsis nucleolar protein database (AtNoPDB). Nucleic Acids Res. 33D633–D636 (2005).

    CAS PubMed Article Google Scholar

  • Na Ayutthaya, PP, Lundberg, D., Weigel, D. & Li, L. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the analysis of protein oligomers in plants. curr. Protocol Plant Biol. 5e20107 (2020).

    CAS PubMed Article Google Scholar

  • Lee, PY, Saraygord-Afshari, N. & Low, TY The evolution of two-dimensional gel electrophoresis—from proteomics to emerging alternative applications. J. Chromatogr. A 1615460763 (2020).

    CAS PubMed Article Google Scholar

  • Toledo Silva, SH, Bader-Mittermaier, S., Silva, LB, Doer, G. & Eisner, P. Electrophoretic characterization, amino acid composition and solubility properties of Macauba (Acrocomia aculeata L.) kernel globulins. Food Biosci. 40100908 (2021).

    Article CAS Google Scholar

  • Leave a Reply

    Your email address will not be published.