Skip to content

A method for increasing electroporation competence of Gram-negative clinical isolates by polymyxin B nonapeptide

  • Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580. https://doi.org/10.1016/s0022-2836(83)80284-8 (1983).

    CAS Article PubMed Google Scholar

  • Mandel, M. & Higa, A. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53, 159–162. https://doi.org/10.1016/0022-2836(70)90051-3 (1970).

    CAS Article PubMed Google Scholar

  • Dagert, M. & Ehrlich, SD Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6, 23–28. https://doi.org/10.1016/0378-1119(79)90082-9 (1979).

    CAS Article PubMed Google Scholar

  • Lee, DJ et al. Gene doctoring: A method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol. 9252. https://doi.org/10.1186/1471-2180-9-252 (2009).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Harlander, SK & McKay, LL Transformation of Streptococcus sanguis Challis with Streptococcus lactis plasmid DNA. App. Environment. microbiol. 48, 342–346. https://doi.org/10.1128/aem.48.2.342-346.1984 (1984).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Dower, WJ Electroporation of bacteria: A general approach to genetic transformation. Genet. English (NY) 12, 275–295. https://doi.org/10.1007/978-1-4613-0641-2_14 (1990).

    CAS Article Google Scholar

  • Regué, M., Enfedaque, J., Camprubi, S. & Tomás, JM The O-antigen lipopolysaccharide is the major barrier to plasmid DNA uptake by Klebsiella pneumoniae during transformation by electroporation and osmotic shock. J. Microbiol. methods fifteen, 129–134. https://doi.org/10.1016/0167-7012(92)90077-H (1992).

    ArticleGoogle Scholar

  • Sugar, IP, Forster, W. & Neumann, E. Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation. Biophys. Chem. 26, 321–335. https://doi.org/10.1016/0301-4622(87)80033-9 (1987).

    CAS Article PubMed Google Scholar

  • Nikaido, H. & Vaara, M. Molecular basis of bacterial outer membrane permeability. microbiol. Rev. 49, 1–32. https://doi.org/10.1128/mr.49.1.1-32.1985 (1985).

    CAS Article PubMed PubMed Central Google Scholar

  • Viljanen, P. The effect of polymyxin B nonapeptide (PMBN) on transformation. Biochem. Biophys. Res. Commun. 143, 923–927. https://doi.org/10.1016/0006-291x(87)90338-x (1987).

    CAS Article PubMed Google Scholar

  • Vaara, M., Viljanen, P., Vaara, T. & Makela, PH An outer membrane-disorganizing peptide PMBN sensitizes E. coli strains to serum bactericidal action. J. Immunol. 1322582–2589 (1984).

    CAS PubMed Google Scholar

  • Viljanen, P. & Vaara, M. Susceptibility of gram-negative bacteria to polymyxin B nonapeptide. Antimicrobial Agents Chemother. 25, 701–705. https://doi.org/10.1128/AAC.25.6.701 (1984).

    CAS Article PubMed PubMed Central Google Scholar

  • Vaara, M. & Viljanen, P. Binding of polymyxin B nonapeptide to gram-negative bacteria. Antimicrobial Agents Chemother. 27, 548–554. https://doi.org/10.1128/AAC.27.4.548 (1985).

    CAS Article PubMed PubMed Central Google Scholar

  • Moore, RA, Bates, NC & Hancock, RE Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrobial Agents Chemother. 29, 496–500. https://doi.org/10.1128/AAC.29.3.496 (1986).

    CAS Article PubMed PubMed Central Google Scholar

  • Buckles, EL et al. Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. infect. Immun. 72, 3890–3901. https://doi.org/10.1128/IAI.72.7.3890-3901.2004 (2004).

    CAS Article PubMed PubMed Central Google Scholar

  • Totsika, M., Heras, B., Wurpel, DJ & Schembri, MA Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. J. Bacteriol. 191, 3901–3908. https://doi.org/10.1128/JB.00143-09 (2009).

    CAS Article PubMed PubMed Central Google Scholar

  • Liu, MA, Kenyon, JJ, Lee, J. & Reeves, PR Rapid customized operon assembly by yeast recombinational cloning. App. microbiol. Biotechnol. 101, 4569–4580. https://doi.org/10.1007/s00253-017-8213-9 (2017).

    CAS Article PubMed Google Scholar

  • Klemm, P., Jorgensen, BJ, van Die, I., de Ree, H. & Bergmans, H. The fim genes responsible for synthesis of type 1 fimbriae in Escherichia colicloning and genetic organization. Mol. Gen. Genet. 199, 410–414. https://doi.org/10.1007/BF00330751 (1985).

    CAS Article PubMed Google Scholar

  • Morona, R., Mavris, M., Fallarino, A. & Manning, PA Characterization of the rfc region of Shigella flexneri. J. Bacteriol. 176, 733–747. https://doi.org/10.1128/jb.176.3.733-747.1994 (1994).

    CAS Article PubMed PubMed Central Google Scholar

  • Davison, J., Heusterspreute, M., Chevalier, N., Ha-Thi, V. & Brunel, F. Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51, 275–280. https://doi.org/10.1016/0378-1119(87)90316-7 (1987).

    CAS Article PubMed Google Scholar

  • Datsenko, KA & Wanner, BL One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. proc. Natl. Acad. Sci USA 97, 6640–6645. https://doi.org/10.1073/pnas.120163297 (2000).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Liao, SW et al. Effects of L-arabinose efflux on lambda Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis. Arch. Microbiol. 200, 219–225. https://doi.org/10.1007/s00203-017-1436-4 (2018).

    CAS Article PubMed Google Scholar

  • Goodall, RCT et al. The essential genome of Escherichia coli K-12. MBio https://doi.org/10.1128/mBio.02096-17 (2018).

    Article PubMed PubMed Central Google Scholar

  • Goryshin IY, Jendrisak J, Hoffman LM, Meis R & Reznikoff WS Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97–100. https://doi.org/10.1038/72017 (2000).

    CAS Article PubMed Google Scholar

  • Fischer-Fantuzzi, L. & Di Girolamo, M. Triparental matings in Escherichia coli. genetics 46, 1305–1315. https://doi.org/10.1093/genetics/46.10.1305 (1961).

    CAS Article PubMed PubMed Central Google Scholar

  • Achtman, M., Kennedy, N. & Skurray, R. Cell–cell interactions in conjugating Escherichia coli: Role of traT protein in surface exclusion. proc. Natl. Acad. Sci USA 74, 5104–5108. https://doi.org/10.1073/pnas.74.11.5104 (1977).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Achtman, M., Manning, PA, Edelbluth, C. & Herrlich, P. Export without proteolytic processing of inner and outer membrane proteins encoded by F sex factor tra cistrons in Escherichia coli minicells. proc. Natl. Acad. Sci USA 76, 4837–4841. https://doi.org/10.1073/pnas.76.10.4837 (1979).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Khetrapal, V. et al. A set of powerful negative selection systems for unmodified Enterobacteriaceae. Nucleic Acids Res. 43, e83. https://doi.org/10.1093/nar/gkv248 (2015).

    Article PubMed PubMed Central Google Scholar

  • O’Keeffe Ahern, J. et al. Non-viral delivery of CRISPR-Cas9 complexes for targeted gene editing via a polymer delivery system. Gene Ther. https://doi.org/10.1038/s41434-021-00282-6 (2021).

    Article PubMed PubMed Central Google Scholar

  • Weaver, JC Electroporation theory. Concepts and mechanisms. MethodsMol. Biol. 55, 3–28. https://doi.org/10.1385/0-89603-328-7:3 (1995).

    CAS Article PubMed Google Scholar

  • Murata, T., Tseng, W., Guina, T., Miller, SI & Nikaido, H. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium. J. Bacteriol. 189, 7213–7222. https://doi.org/10.1128/JB.00973-07 (2007).

    CAS Article PubMed PubMed Central Google Scholar

  • Richards, SM, Strandberg, KL, Conroy, M. & Gunn, JS Cationic antimicrobial peptides serve as activation signals for the Salmonella typhimurium PhoPQ and PmrAB regulons in vitro and in vivo. Front. Cell. infect. microbiol. two102. https://doi.org/10.3389/fcimb.2012.00102 (2012).

    CAS Article PubMed PubMed Central Google Scholar

  • Lennox, ES Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206. https://doi.org/10.1016/0042-6822(55)90016-7 (1955).

    CAS Article PubMed Google Scholar

  • Qin, J., Doyle, MT, Tran, ENH & Morona, R. The virulence domain of Shigella IcsA contains a subregion with specific host cell adhesion function. PLoS One fifteen, e0227425. https://doi.org/10.1371/journal.pone.0227425 (2020).

    CAS Article PubMed PubMed Central Google Scholar

  • Leave a Reply

    Your email address will not be published.